Electronic Notes in Theoretical Computer Science 58 No. 2 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume58.htmll 16 pages

Path-based Security for Mobile Agents

Gerald Knoll

Institute for Human & Machine Cognition, University of West Florida Pensacola,
FL, USA

Niranjan Suri

Institute for Human & Machine Cognition, University of West Florida Pensacola,
FL, USA

Jeffrey M. Bradshaw

Institute for Human & Machine Cognition, University of West Florida Pensacola,
FL

1 Introduction

As mobile agents are increasingly adopted in intranets, on the Internet, and
on computational grids, new security concerns become increasingly important.
Unlike other kinds of mobile code, such as applets, which are pulled a single
time to remote systems (single-hop), mobile agents may move using their own
itinerary through a series of systems (multiple-hop), potentially carrying sen-
sitive information with them. In such scenarios, mobile agents introduce new
vulnerabilities: hosts are at the mercy of malicious (or buggy) agents that
may compromise the integrity of the host execution environment and agents
are at the mercy of malicious hosts that are capable of examining or modi-
fying the code or data of the agent, or presenting a false environment to the
agent (as in a masquerade attack), thereby causing the agent to execute incor-
rectly. Widely used security measures such as cryptography, authentication,
and access control do not address these kinds of problems.

A particularly dangerous form of agent tampering by a malicious host
occurs in the multiple-hop scenario. In this situation, an agent that was
benign (and potentially trusted) to begin with could be turned into a malicious
agent. Since the agent was originally a trusted agent, a subsequent host might
naively grant the agent higher privileges, which could be misused by the now
malicious agent. Such an agent could cause significantly more damage to the
unsuspecting host than a malicious agent that was not trusted by the host
and thereby executed with greater protections.

Some solutions have been developed to address both security concerns:
protecting hosts from malicious agents and protecting agents from malicious

(©2002 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume58.html

hosts. Note that it is also possible for a malicious agent to attack another
agent. However, given that a malicious host has complete control over an
agent’s execution environment, the points of attack available to a malicious
host comprise a superset of the points of attack available to a malicious agent.
Therefore, the problem of protecting an agent from a malicious agent is sub-
sumed by the problem of protecting the agent from a malicious host.

In general, the solutions to protect hosts are successful (if the hosts applies
the necessary security mechanisms when executing agents). However, the
solutions to protect agents have not been successful. The goal of this effort is
not to solve the problem of protecting an agent from a malicious host, but to
help a host determining the appropriate trust level of a visiting agent so that
a host may protect itself using the necessary security mechanisms.

Section two of this paper provides a survey of existing solutions to mobile
agent security. The following section briefly describes the NOMADS mobile
agent environment where our proposed security solution is being implemented.
Section four presents the proposed solution for path-based security for mobile
agents. Section five concludes with a summary and a discussion of future
work.

2 Mobile Agent Security

Agent security may be broadly divided into two categories: securing an agent
and securing a host. Further, securing an agent may be classified into different
threats and attacks. The main threats are tampering with the agent and
extracting private information from an agent. Denial of service attacks against
an agent are placed in the category of tampering with the agent. Masquerading
attacks by a host or other agents are mentioned but not discussed in detail.
Figure [summarizes the existing solutions for agent security.

2.1 Securing a Host

Several different solutions are available in the field of host security. Software-
based fault isolation [24] (sandboxing [3]) and safe code interpretation [I6]
provide security mechanisms that successfully protect hosts against many dif-
ferent threats. Additionally, there are other solutions such as signed code
[6], state appraisal [22], path histories [4,15], safe code interpretation [I6],
and proof carrying code [[3,24] that provide partial host security. The NO-
MADS mobile agent environment is an example of a system that provides
dynamic access and resource control and a policy-based approach to host se-
curity [2,20,21].

Host security mechanisms often have to make a tradeoff between the ability
of an agent to perform operations and the security of the system. A highly
restrictive environment (e.g. sandboxing in JDK 1.0.2) may provide good
security but does not allow agents to carryout many useful tasks. On the other

2

Software-Based Fault Isolation,
Safe Code Interpretation,

Proof Carrying Code, Signed Code,
Path Histories, State Appraisal

Tamper Proof
Hardware
Execution- Environmental Key-

Replication &
Tamper Proof-

Voting X
Hardware Trust Appraisal Tracing Generation
Code Obfuscation Proof Carrying- Reference- Trust A.ppralsﬂl.
Stat Execution Tracing
Code aLes ~
Rout Trust-level
Partial Result Encapsulation ou e-. Exchanging-
PRAC Protection Protocol
Sliding Encryption Proof Carrying Code
Encrypted Functions Route Protection

Fig. 1. Classification of Agent Security Approaches

hand, a less restrictive environment may allow agents to perform necessary
tasks but may not be able to protect a host from a malicious agent. In an
ideal world, by contrast, we would be able to determine exactly what level of
trust is appropriate for a given agent, and determine the specific operations
that should be allowed for that agent accordingly. NOMADS approaches
this problem by allowing different security policies to be applied to an agent
depending on various properties such as its owner or code base. However, in
multiple-hop scenarios it is often difficult to determine an appropriate trust
level for the agent. For example, consider an agent that enjoys a high level of
trust and access to system resources because it has been created locally on the
host and begins execution on behalf of the owner of that host. However, once
the agent begins to visit other hosts, there is a possibility of agent tampering.
When a tampered agent returns to the original host and the host reassigns a
high trust level to the agent, then the modified agent could easily disrupt the
integrity of the host’s execution environment.

Given that there are no satisfactory solutions to detect tampering of an
agent (see section 2.2), the agent could be manipulated by a malicious host
without detection.

2.2 Securing an Agent

With respect to the protection of agents, there are several limited solutions,
but ultimately no satisfactory ones. See Table 1 below for a summary.

Preventing information extraction. A goal of some approaches is to prevent
any information from being extracted from the agent, thus making tampering
difficult or at least detectable. Examples of such approaches include tamper
proof hardware [26] and code obfuscation [8]. Tamper proof hardware requires
a specially manufactured device that acts as the execution environment for an
agent. The hardware device still can be modified after longer observations
and therefore needs an additional maintenance service. Currently, there is
no manufacturer who produces these devices for the masses. Also, the high
cost of these devices makes them impractical for a large number of users.
Even if tamper proof hardware devices were to become commonly available
in the future, we would still need to ensure that the manufacturers do not
have malicious intentions. Another approach is limited black box [R], which
uses the concept of code obfuscation. In this case, performance decreases
because of additional costs at transmission and execution time. No proofs
have been developed to establish the minimum duration of time for which the
methods are effective. Additional limitations are that a global time clock is
needed and the fact that black box testing of the agent can still occur. The
above approaches to change an agent into a black box provide no practical
and completely implemented solution. The approach can be also be used to
encrypt only parts of an agent in case the agents are large. Note that another
unfortunate consequence of black box approaches is that the host, by virtue
of not being able to examine the agent, might be less able to protect itself
from a malicious agent.

Another category of approaches tries to secure a small part of the agent
against information extraction and tampering by a host. Examples in this
category include partial result encapsulation [d], sliding encryption [28], par-

tial result authentication codes [27], forward integrity [,10], environmental
key generation [I7], computing with encrypted functions [I¥], undetachable
signatures [[1], and trust appraisal [6]. Environmental key generation is use-

ful if there is a need for different levels of access rights to an agent. If a given
environmental condition is true, some encrypted data is decrypted for the
host. However, a major problem with this approach is that it allows a host to
explore the executable code of the visiting agent. Computing with encrypted
functions is an approach that provides functions that can only be executed in
the encrypted stateso far this approach only supports functions that accept
polynomial or rational inputs. This means in practical terms that most parts
of an agent cannot be encrypted in this fashion. Undetachable signatures is
a variation of encrypted functions and uses the RSA scheme to protect a sig-
nature function. Unfortunately, it is not a workable solution for a multiple
hop scenario. Trust appraisal requires negotiation between an agent and host
through trust appraisal functions. However, the approach is not practical if an

4

agent travels to many hosts during the course of execution without returning
to the home system regularly. Moreover, there exists no acceptable mechanism
to distinguish between normal state execution and malicious state execution.

Detecting tampering. In contrast to mechanisms that prevent informa-
tion extraction, other mechanisms have been developed to detect tampering
(either during tampering or after the tampering has succeeded). Detection
mechanisms aim at detecting illegal modification of code, state or execution
flow of a mobile agent. The approaches available in this category are mutual
itinerary recording [A], server replication [I?], execution tracing [23], reference
states [[], proof carrying code [I3], route protection [25], and the trust-level
exchanging protocol [I4]. Ttinerary recording is based on replicating an agent
several times. The overhead of the itinerary recording makes this approach
impractical. Moreover, as the size of an agent increases, the performance is
also affected by the replication cost. The agent has to be duplicated and
executed multiple times, where constant communication between the agents
is necessary. The problem with server replication is that all agents are ex-
ecuted on the same platform and if the platform is malicious, the platform
may tamper with more than one agent thereby causing this approach to fail.
Also, the performance loss due to replication is higher than that of the pre-
vious solutions. There are several problems with execution tracing. The first
problem is that the traces add substantial overhead. The second problem is
that the owner must be suspicious enough to initiate a verification operation.
The third problem is that the algorithm requires a trusted home to perform
the re-computation of the trace. Finally, the approach does not detect invalid
(or malicious) input that a host may provide to an agent. Reference states
requires that each state of the computation of the agent be repeated twice.
Moreover, the previous host can send the malicious input to the next host,
which implies that the current host has to verify the input. Collaborating
attacks of two hosts also cannot be detected by this approach. Proof car-
rying code is not implemented yet because of the following missing features:
a standard formalism for establishing security policy, automated mechanisms
for the generation of proofs, techniques for limiting the potentially large size
of proofs, and a platform independent implementation. Trust-level exchang-
ing protocol provides no help when the host and the TTP do not trust each
other. We recognize that masquerading attacks by a host or other agents are
another source of problems for which solutions have been proposed, but do
not consider these approaches here.

2.3 Protecting the Path of an Agent

The security approach proposed in this paper relies on analysis of the path
of a mobile agent. Several approaches have been developed to ensure the in-
tegrity of an agent’s path. The properties or structure of the agent determine
the particular approach to be employed. In all variations of these approaches,
the goal is to prevent or detect modification of the planned or already tra-

5

versed path. For some agents the path can be hard- coded while for other
agents the path cannot be determined ahead of time. It is easier to protect
static path information than the information about a path that has yet to be
determined. Various approaches make the simplifying assumption that the
agent returns back home after traveling through different hops. But this is a
specific assumption that does not hold for all agents. To provide protection of
an agent’s uncertain path, it is necessary to collect some information, such as
the hostname or IP address, at each hop. This information can be encrypted
to prevent extraction or tampering.

One solution that provides full security is to allow the agent to travel only
to trusted hosts that are already registered with a certificate authority (CA).
Secure routing [I4] takes this approach and ensures that the travel path is
restricted through routing policies. The agent is not allowed to travel to a
host whose IP address is not registered with a CA. But this does not provide
a solution for an agent that needs to travel to hosts that are not a priori
certified.

An approach that requires the encryption of only small parts of the agent
is called partial result encapsulation [d]. In general, there are three different
ways to provide partial encryption. One way is for the agent to encrypt its
data without help of another subject. The agent does not reveal the means by
which the data was encrypted. Another is to rely on the encryption capabilities
of an agent’s host. The third and most popular solution to date is to use a
Trusted Third Party (TTP) that provides a timestamp on a digital fingerprint
of the results.

The Partial Result Authentication Codes (PRAC) [27] approach relies on
three entities: the agent, the host, and the TTP. As the agent migrates to
a host, there is an authentication protocol, which generates a symmetric key
that the agent can use to encrypt information. The key has to be provided
to the home or TTP in a secure way. After the execution of the agent, the
symmetric key in the agent is destroyed so that the key is not misused. Back
at home, the encrypted code can be analyzed to make sure that no host has
changed anything and that forward integrity [1] is provided. Instead of using
symmetric keys, it is also possible to use a Public Key Infrastructure (PKI) or
digital signatures. A problem with this approach is that no backward integrity
is provided. This means that the first host that is visited has access to the keys
of all the hosts yet to be visited. When the agent visits the first host again, the
host has access to all available data. There is also no mechanism to prevent
the deletion of all of the encrypted data. A PRAC enhancement proposed in
[T0] is to construct a chain of encapsulated results from the previous host to
the next. Every applied data is encrypted with the private key of the current
host and a hash function is constructed that links to the applied data. Then,
the public key of the home is additionally used to encrypt the data.

Route protection [25] is a solution that has the added advantage of pro-
viding anonymity for an agent. It requires a home system to compute an

6

encrypted message for every host that an agent is going to visit before the
agent leaves the home system. This encrypted message contains the agent’s
path. The current host only has access to routing information for the home,
the previous host, and the next host. Through digital signing of these nested
messages, attacks that attempt to modify the route of the agent can be de-
tected. Additionally, it is possible to extend the route, but with the restriction
that the host extending the route must provide the signed routing informa-
tion in a similar manner to the home system. The host that extended the
route must again be visited after the route extension ends. Most, but not
all, collaborating attacks can be detected through broadcasting mechanisms.
One drawback is the cost of the calculation that must be performed before the
agent is sent and once again be performed each time the route is extended.
Also the routing information grows exponentially with the number of hosts
visited. Finally, detecting malicious behavior of a host requires an additional
TTP.

2.4 Summary of Existing Approaches to Agent Security

Table 1 summarizes existing solutions to secure an agent. All solutions to
date contain an unacceptable number of weaknesses or limitations. Some do
not have an available implementation. The entries in the table are further
categorized according to the forms of attacks they try to prevent.

3 Overview of Nomads

The proposed security mechanisms are incorporated into the NOMADS mo-
bile agent system. NOMADS supports strong mobility and safe agent exe-
cution [20,21]. Strong mobility allows the execution state of an agent to be
captured and moved with the agent from one host to another. NOMADS
uses the state-capture mechanism to go beyond strong mobility and also sup-
port forced mobility, which allows the system to move agents from one host
to another by force (potentially in a completely transparent manner to the
agent). Such forced mobility is extremely useful for situations that involve
load balancing, process migration, systems shutting down, etc. Safe execution
of agents is based on the ability of NOMADS to control the resources accessed
and consumed by agents. The resource control mechanism allows control over
the rate and quantity of resources used by agents. Dynamically adjustable
limits can be placed on several parameters including the disk, network, and
CPU. These resource control mechanisms complement Java’s access control
mechanisms and help in making the NOMADS system secure against mali-
cious agents. NOMADS derives its unique capabilities from a custom Java
Virtual Machine called Aroma [TY].

The NOMADS system makes extensive use of security policies and can
work in conjunction with high-level policy management tools and mechanisms,

7

Approach of Agent Se- | Protect In- | Detect Prevent Implemen-
curity formation? | Tamper- Masquerad- | tation
ing? ing? Available?

Secure Routing Yes Yes No Yes
Tamper Proof Hard- | Yes Yes Yes Yes
ware
Code Obfuscation Yes (" time) | Yes (7 time) | No No
Partial Result Authen- | Partial Partial No Yes
tication Codes
Sliding Encryption Partial Partial No No
Chained Digital Signa- | Partial Partial No Yes
ture Protocol
Chained MAC Protocol | Partial Partial Yes Yes
Environmental Key | Partial Partial Yes No
Generation
Encrypted Functions Partial Partial No No
Undetachable Signa- | Partial Partial No No
tures
Trust appraisal No Yes Yes Partial
Mutual Itinerary | No Yes No Yes
Recording
Server Replication No Yes No Yes
Execution Tracing No Yes Yes No
Reference States No Yes Yes () Yes
Proof Carrying Code No Yes Yes () No
Route Protection Partial Partial No Yes
Trust-level exchanging | No Yes Yes No
protocol

Table 1

Summary of Existing Solutions to Secure against Malicious Hosts

such as those implemented in KAoS and the DARPA CoABS Grid [2]. Cur-
rently, policies are enforced on an agent based on the authentication of the
agent (i.e., the owner of the instance of the agent) and the agent’s code source
(i.e., the author of the agent). Additional enforcement strategies are under
development. The security policies are used to specify a wide range of con-
straints on the execution of the agent. NOMADS also supports dynamically

8

changing the policies that apply to an agent based on observed behavior of
the agent.

4 Path-Based Security for Mobile Agents

The mechanisms described in this paper extend the security framework already
available in NOMADS. Currently, NOMADS does not take into account the
prior path of host visits of a mobile agent (thereby making the system vulner-
able to agents that have been tampered by malicious hosts). The goal of this
approach is to take advantage of the information regarding the path of a mo-
bile agent in order to make NOMADS more secure in a multiple hop scenario.
In particular, the path of an agent should be taken into consideration when
applying security policies to mobile agents. This requires that the path of a
mobile agent be determined. The mechanism developed for determining the
path is a lightweight approach that requires very little infrastructure and pro-
vides good performance when compared to previously described approaches.
In particular, the goal is to not completely protect an agent’s path information
from being modified, but to limit the damage that a tampered agent could
cause to other hosts (i.e., the principle of acceptable losses).

One of the goals of the approach was to require minimal additional in-
frastructure. In particular, we did not want to rely upon the existence of a
Certificate Authority (CA). Using a CA complicates the necessary infrastruc-
ture that needs to be established for mobile agents to be deployed. Moreover,
if a CA is used, then there is additional overhead when an agent moves to a
server that is in a different realm. In this situation, either the destination host
has to simply assume that the CA is trusted (which is a security weakness)
or has to go through a laborious process of establishing the trust relationship
to the original CA. Therefore, not requiring a CA implies wider scalability of
agents, which is a fundamental requirement for mobile agent systems. The
path-based security approach consists of two components:

(i) The chained IP protocol that maintains the path information.

(ii) A policy manager that uses the path information to compute a trust level
for the agent and apply an appropriate security policy.

As described in section two, current solutions to obtain the path informa-
tion of an agent are either too restrictive, incomplete (not implemented), or
too expensive (in terms of performance). Given the desire for a lightweight
system with little additional infrastructure, the chained IP protocol is very
simple and does not attempt to provide cryptographically secure path infor-
mation. Instead, each host is allowed to append to the path information
directly. However, the policy manager applies the notion of trust levels to
determine the accuracy of the path information as recorded by the various
hosts. Note that the ultimate goal of our approach is to compute an appro-
priate trust level for an agent, not to determine the actual path of the agent.

9

Hence, our lightweight approach is adequate. However, if more accurate path
information is desired, the chained IP protocol can be combined with a TTP.

4.1 Chained IP Protocol

The responsibility of the chained IP protocol is to maintain information about
the agent’s path. The path information (hostname + IP address) is attached
to the agent’s metadata and carried with the agent. Each host that the agent
visits adds a new record to the path information. This record contains the IP
address of the host that has been visited. When an agent arrives at a host,
the receiving host determines the source IP address of the connection from
the network layer. The receiving platform then checks to make sure that the
source host has correctly added its IP address to the path information. This
is illustrated in Figure B.

Host 1) Append Host 3) Append Host
1 Pathlnfol 2 PathInfo? 3
r"kl:‘gllnr
Rt L Y PR B B S
2¥ Check Pathlnfol 4) Check Pathinfa2

Fig. 2. Chained IP Protocol

In step 1, the path information of host 1 is added to the metadata (tracking
information block) of the agent before the agent is sent to host 2. As the agent
arrives at host 2, the host can check the IP address of host 1, to verify that
the addresses matches with the path information in the agent. Steps 3-4 are
the same as 1-2. Note that host 3 can only verify the IP address of host 2. In
general, a receiving host can verify the validity of the path information only
for the last hop. In particular, it does not prevent an intermediate host from
changing previous path information (by adding spurious hosts to the path,
masking or deleting hosts, or changing hosts). However, the implementation
of the policy manager still allows an appropriate trust level to be computed
regardless of such modifications (see section 4.2). Even multiple IP addresses
on one host would only extend the configuration for the policy manager at
every host.

This approach relies on the network layer’s ability to correctly determine
the TP address of the source of an agent transfer connection. Note that IP
spoofing would allow a host to masquerade as another host thereby defeating
the ability of the receiving host to correctly determine the source IP address.
We are not assuming that IP spoofing will not occur. However, mechanisms
to prevent IP spoofing or to make IP spoofing more difficult should be pro-
vided from the network administrator. IP verification is one possible way to

10

greatly reduce the possible scale of IP spoofing attacks. Figure B illustrates
the reliability with which a receiving host can determine the previous path.

Mm .Fj;_.

Fig. 3. Reliability of the Chained IP Protocol

Suppose an agent travels from host A to B to C before arriving at D.
Host D knows that agent arrived from C (because of the information provided
by the network layer). If the policy manager in D trusts host C, then the
information verified by C (that the agent moved from B to C) can also be
trusted. Similarly, if host B can be trusted, then the information regarding the
agent’s movement from A to B can also be trusted. Therefore, the reliability
of the path information can be evaluated based on the trust levels of the
preceding hosts. The reliability of the previous host information may become
weaker as we get farther away from the current host.

If more reliable path information is desired, the chained IP protocol can
be combined with a TTP. The operation of the TTP is illustrated in Figure

.
2) Verify path "
mformation -~ _-

1) Log IP acldr e

of next host _,x’};rD:gIP adedr.
=" " ofnexthost

4) Verify path
nformation

Fig. 4. Chained IP Protocol with a TTP

The TTP requires a few additional steps during the transfer of agents.
Before an agent is sent to another host, the source host records the destination
host’s IP address with the TTP (as shown in steps 1 and 3). When a host
receives an agent, the host may contact the TTP to verify the path information
that is present in the agent (as shown in steps 2 and 4). Note that these
steps are in addition to the steps described in Figure P to update the path
information in the agent.

11

Figure B shows the reliability with which a receiving host can determine
the previous path when a TTP is present. Note that if the receiving host does
not trust the TTP, then we are back to the same case as above. However, if
the receiving host trusts the TTP, then the path information recorded by the
agent can be compared with the path information in the TTP. A TTP allows
the algorithm to determine the path with a high degree of confidence even
if one of the hosts is not trusted. It is still possible for two malicious hosts
to collude with each other and falsify the path information between them.
Therefore, the policy manager on the receiving host has to still check whether
any of the intermediate hosts are not trusted and act accordingly.

Fig. 5. Trust Levels with help of a TTP

An interesting possibility is that an intermediate host may lower the trust
level of an agent by deliberately inserting IP addresses of untrusted hosts
(although the agent may have never visited those hosts). However, such an
action implies that the intermediate host is malicious and should not have
been trusted by the policy manager anyway.

4.2 Policy Manager

The role of the policy manager is to compute the trust level of an agent and
then choose an appropriate security policy. An administrator must provide
the policy manager with information about the trust levels of hosts. This
information is provided by means of a configuration file that maps IP addresses
(or hostnames) to trust levels. By default, the policy manager assigns a low
trust level to all hosts unless overridden by an entry in the configuration file.

The algorithm applied by the policy manager to compute the trust level is
straightforward. The first check is to verify that the last hop address recorded
in the path information is the same as that reported by the network layer. If
this check fails, the policy manager generates a warning and returns with a
low trust level.

Then, the policy manager traverses backwards through the path informa-
tion and determines the trust level for each host. The final trust level is the
minimum of all the trust levels of the hosts in the path. Figure B shows an
example of an agent that moves from the home system (A) through hosts B
and C before arriving at host D. On host B, host A is assigned a high trust

12

level. On host C, the trust levels are low and high for A and B respectively.
On host D, the trust levels are medium, low, and high for A, B, and C respec-
tively. Applying the above algorithm, host B will assign a high level of trust
to the agent and hosts C and D will assign low levels of trust to the agent.

Note that the path information carried by the agent is not encrypted and
is accessible to all hosts. This allows each host to independently compute a
trust level based on the path and the local configuration information.

Trst-leval of the At

high ———_ high —— low ——_ low

) | [3 ®

Trust-level in Hosts: A s high Ao low A s medinm
E is high Bis low
iz high

Fig. 6. Trust-level Calculation of an Agent

Figure [] shows another example of the computation of the trust levels. Asa
new agent is created at Home A the trust level of the agent is set to high (step
1). Home A sends the agent to Host B (step 2). Host B recomputes the trust
level of the agent through its security policies. The trust level remains high
(step 3) because B trusts all systems in the local network. Host B sends the
agent into another environment, a famous bookstore, in this example (step
4). The bookstore does not know anything about the client network (and
consequently host B). Therefore, the trust level is calculated as low (step 5).
When host D receives the agent from host C (step 6), the trust level remains
low (step 7). Host D sends the agent in step 8 back to the client network to
home A. Because host A has a high trust level for the bookstore network, the
trust level of the agent is recalculated to be high (step 9).

5 Conclusions and Future Work

The path-based security for mobile agents introduced in this paper provides
a mechanism that extends the security of the NOMADS mobile agent system
in a multiple-hops scenario. A lightweight protocol for tracking agent paths
has been developed that is based on chaining IP addresses. A receiving host
environment computes a trust level for the agent, which is then used to choose
and apply a security policy to the incoming agent. A TTP is optionally
supported to provide more reliable path information.

The current implementation uses just three levels of trust: high, medium,
and low. In the future, we would like to extend the system to support a finer
granularity of trust levels. Also, the current implementation automatically
assigns a low level of trust to hosts that are unknown. We would like to explore

13

Fig. 7. Change of Trust Level

a mechanism that allows the trust levels to be derived through transitive
trust relationships. Finally, we would like to incorporate mechanisms that
dynamically vary the trust levels of hosts based on past historical information
regarding the behavior of those hosts.

References

[1] Bellare, M., and Yee, B.S. Forward Integrity For Secure Audit Logs. Technical
Report UC at San Diego, 1997.

[2] Bradshaw, J. M., Suri, N., Kahn, M., Sage, P., Weishar, D. and Jeffers, R.
Terraforming cyberspace: Toward a policy-based grid infrastructure for secure,
scalable, and robust execution of Java-based multi-agent systems. Proceedings
of the Autonomous Agents 2001 Workshop on Scalable Agent Infrastructure,
May 2001, Montreal Canada.

[3] Chang, F., Itzkovitz, A., and Karamcheti, V. Secure, User- level Resource-
constrained Sandboxing. TR1999-795, 1999.

[4] Chess, D. TItinerant Agents for Mobile Computing. IEEE Personal
Communications, vol. 2, no. 5, 1995, pages 34-49.

[5] Farmer, W., Guttman, J., and Swarup V. Security for Mobile Agents:
Authentification and State Appraisal. Fourth European Symposium on
Research in Computer Security, pages 118-130, 1996.

[6] Gray, R. S. Agent Tcl: A Flexible and Secure Mobile-Agent System. Proceedings
of the 4th Annual Tcl/Tk Workshop, 1996, pages 9-23.

[7] Hohl, F. A Framework to Protect Mobile Agents by Using Reference States.
Technical Report Nr. 2000/03, Universitt Stuttgart, 2000.

14

[8] Hohl, F. Time Limited Blackbox Security: Protecting Mobile Agents From
Malicious Hosts. In Vigna, G. (Ed.), Mobile Agents and Security, Springer-
Verlag, 1998.

[9] Jansen, W., and Karygiannis, T. Mobile Agent Security. NIST Technical
Report, 1999.

[10] Karjoth, G., Asokan, N., and Guelcue, C. Protecting the computation results
of Free-roaming agents. Rothermel, Popescu-Zeletin, pages 1-14, 1998.

[11] Kotzanikolaou, P., Burmester M., and Chrissikopoulos, V. Secure Transactions
with Mobile Agents in Hostile Environments. In Dawson, E., Clark, A., and
Boyd, C. Information Security and Privacy. LNCS Vol. 1841, Springer-Verlag,
pages 289-297, 2000.

[12] Minsky, Y., Renesse, R. van, Schneider, F.B., and Stoller, S.D. Cryptographic
Support for Fault-Tolerant Distributed Computing, 1996.

[13] Necula, G.C., and Lee, P. Safe, Untrusted Agents using Proof-Carrying Code.
Carnegie Mellon University, 1998.

[14] Ng, S. Protecting Mobile Agents against Malicious Hosts. Master Thesis: The
Chinese University of Hong Kong, 2000.

[15] Ordille, J. J. When Agents Roam, Who Can You Trust? Proceedings of the First
Conference on Emerging Technologies and Applications in Communications,
Portland, Oregon, May 1996.

[16] Ousterhout, J. K. Scripting: Higher-Level Programming for the 21st Century.
IEEE Computer, 1998, pages 23-30.

[17] Riordan, J., and Schneier, B. Environmental Key Generation Towards Clueless
Agents. Vigna, G. (Ed.), Mobile Agents and Security, Springer-Verlag, 1998.

[18] Sander, T., and Tschudin, C.F. Protecting Mobile Agents Against Malicious
Hosts. Vigna G. (Ed.) Mobile Agents and Security. Springer-Verlag, 1997.

[19] Suri, N. Bradshaw, J.M., Breedy, M.R., Ford, K.M., Groth, P.T., Hill, G.A.,
Saavedra, R. State Capture and Resource Control for Java: The Design
and Implementation of the Aroma Virtual Machine. Available on-line at
http://nomads.coginst.uwf.edu/.

[20] Suri, N., Bradshaw, J.M., Breedy, M.R., Groth, P.T., Hill, G.A., Jeffers, R.,
and Mitrovich, T.S. An Overview of the NOMADS Mobile Agent System. Sixth
ECOOP Workshop on Mobile Object Systems.

[21] Suri, N., Bradshaw, J.M., Breedy, M.R., Groth, P.T., Hill, G.A., and Jeffers, R.
Strong Mobility and Fine-Grained Resource Control in NOMADS. Proceedings
of the 2nd International Symposium on Agents Systems and Applications and
the 4th International Symposium on Mobile Agents (ASA/MA 2000). Springer-
Verlag.

15

[22] Swarup, V. Trust Appraisal and Secure Routing of Mobile Agents. DARPA
Workshop on Foundations for Secure Mobile Code Workshop, 1997.

[23] Vigna, G. Cryptographic Traces for Mobile Agents. In Vigna, G. (Ed.): Mobile
Agents and Security, pages 137-153, Springer-Verlag, 1998.

[24] Wahbe, R., Lucco, S., and Anderson, T. Efficient Software- Based Fault
Isolation. Proceedings of the 14th ACM Symposium on Operating Systems
Principles. ACM SIGOPS Operating Systems Review, 1993, pages 203-216.

[25] Westhoff, D., Schneider, M., Unger C., and Kaderali, F. Protecting a Mobile
Agent’s Route against Collusions. Springer LNCS 1758, 1999.

[26] Wilhelm, U.G., Staamann, S., and Butty, L. Introducing Trusted Third Parties
to the Mobile Agent Paradigm. In Vitek J., and Jensen, C. (Eds.), Secure
Internet Programming: Security Issues for Mobile and Distributed Objects, pp.
471-491, Springer-Verlag, 1999.

[27] Yee, B.S. A Sanctuary for Mobile Agents. DARPA Workshop on Foundations
for Secure Mobile Code, 1997.

[28] Young, A., and Yung, M. Encryption Tools for Mobile Agents: Sliding
Encryption in Biham, E. (Ed.): Fast Software Encryption. Springer-Verlag,
1997.

16

	Introduction
	Mobile Agent Security
	Securing a Host
	Securing an Agent
	Protecting the Path of an Agent
	Summary of Existing Approaches to Agent Security

	Overview of Nomads
	Path-Based Security for Mobile Agents
	Chained IP Protocol
	Policy Manager

	Conclusions and Future Work
	References

